

Supported by

Application of early error field correction to reduced-density advanced scenarios

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

J. Menard, J.-K. Park

NSTX FY2011-12 Research Forum LSB B318, PPPL March 16, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

Motivation

- Insufficient fueling during LiTER generally results in "unstable" plasma early in discharge – ramp-up, early flat-top
 - Can often be caused by "locked-modes" or rotating modes that lock
 - Torque from error fields well-known cause of rotation damping, locking
 - Ample evidence this is occurring on NSTX
- Reduced early EF could reduce mode locking, lower P_{LH}
 n=1 EF caused by OHxTF, and we have correction algorithm(s) in PCS
- Supports: R12-3 to assess access to reduced n_e, collisionality
- Also supports other ASC high priorities:
 - "Develop and implement improved plasma control techniques to achieve advanced operating scenarios"
 - "Develop improved plasma formation and ramp-up techniques for reduced density and collisionality"

2010: EFC amplitude scan determined values for increasing max rotation, and for EFC over-compensation (rotation reduction)

Impact of EFC is measurable, but only 10-20% increase in rotation at best
 → NOTE: EFC is on starting from -50ms (through breakdown)

3

2010: Density scan shows plasma is sensitive to EFC amplitude between t=100-200ms when density is reduced

 Density threshold for locking decreases by up to factor of 2 from over-compensated EFC → to near optimal EFC

NSTX FY11-12 Research Forum – ASC – Early EFC (Menard)

Very carefully matched low density plasmas with and without EFC show EFC increases rotation 10-20% for t=120-180ms

NSTX FY11-12 Research Forum – ASC – Early EFC (Menard)

3. Experimental run plan

- **Used fiducial** A. Reproduce increased rotation w/ n=1 early EFC using fiducial or 700kA shot 135779 (4 shots)
- B. Scan EFC turn-on time, amplitude, phase to optimize EFC

	a. Timing scan:	-30, -20, -10, 0, +20, +40ms	(5-7 shots)	Varied timing
	b. Amplitude scan:	×0.6, 0.8, 1, 1.2, 1.4	(4-6 shots)	Varied amplitude
	c. Phasing scan:	-30, -15, 0, 15, 30°	(4-6 shots)	Did not vary phasing
C.	Assess stability at low dens	ity with and without optimized n=1 EFC		
	a. Reduce density in 2	0% steps until LM disruption with n=1 EFC	(8 shots)	Scanned density with
D.	D. Increase flat-top I _P and assess/optimize n=1 EFC			and without EFC
	a. Scan EFC amplitud	e: ×0.8, 1.2, etc. for 0.9MA, 1.1MA	(6 shots)	Did not vary I _P
E.	Assess impact of early EFC	on breakdown by turning on EFC during OH pre-char	rge (2 shots)	Applied EFC during break-down for many

shots

Issues, shot-plan

1.5 day request, 0.75 day minimum useful (was 0.5 on web)

- Error fields in ramp-up potentially very complex
 - OHxTF "DC" error field is varying rapidly
 - Induced currents in the passive structures/vessel contribute to the total EF at plasma in ways not easily measured with external magnetics
 - Sensor compensation also very challenging (least reliable during ramp)
 - → Systematic quasi-empirical scans of EFC phase and amplitude will be utilized to try to reduce plasma rotation damping and mode locking
- 1. Reproduce increase in rotation with n=1 early EFC
 - 1. Refine/scan EFC phase and amplitude to optimize EFC to increase early rotation, reduce mode-locking activity
 - 2. Phasing scan: -90,-60, -30, 0, 30, 60, 90, 135, 180 degrees
 - 3. Amplitude scan: 0.6, 0.8, 1, 1.2, 1.4 relative to best previous
- 2. Assess stability at low n_e with/without optimized n=1 EFC to quantify any increase in rotation and/or reduction in density
- 3. Vary I_{P} ramp-rate and/or flat-top I_{P} to assess EFC robustness